Improved Time of Arrival measurement model for non‐convex optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

Optimization of Real Time PCR for Precise Measurement of HER2 Overexpression in Breast Cancer Specimens

Background: Breast cancer is one of the most prevalent malignancies among women in various countries. HER2 overexpression, which is due to different reasons, occurs in 20-30% of breast cancers. HER2 gene encodes an 185kDa transmembrane glycoprotein with 1255 amino acids. This active product triggers downstream intracellular signaling pathways inducing cell proliferation and cell survival. These...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

Finding Approximate Local Minima for Nonconvex Optimization in Linear Time

We design a non-convex second-order optimization algorithm that is guaranteed to return an approximate local minimum in time which is linear in the input representation. The previously fastest methods run in time proportional to matrix inversion or worse. The time complexity of our algorithm to find a local minimum is even faster than that of gradient descent to find a critical point (which can...

متن کامل

Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization

Stochastic optimization naturally arises in machine learning. E cient algorithms with provable guarantees, however, are still largely missing, when the objective function is nonconvex and the data points are dependent. This paper studies this fundamental challenge through a streaming PCA problem for stationary time series data. Specifically, our goal is to estimate the principle component of ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Navigation

سال: 2019

ISSN: 0028-1522,2161-4296

DOI: 10.1002/navi.277